STIR-Net: Deep Spatial-Temporal Image Restoration Net for Radiation Reduction in CT Perfusion
نویسندگان
چکیده
منابع مشابه
W-Net: A Deep Model for Fully Unsupervised Image Segmentation
While significant attention has been recently focused on designing supervised deep semantic segmentation algorithms for vision tasks, there are many domains in which sufficient supervised pixel-level labels are difficult to obtain. In this paper, we revisit the problem of purely unsupervised image segmentation and propose a novel deep architecture for this problem. We borrow recent ideas from s...
متن کاملDR2-Net: Deep Residual Reconstruction Network for Image Compressive Sensing
Most traditional algorithms for compressive sensing image reconstruction suffer from the intensive computation. Recently, deep learning-based reconstruction algorithms have been reported, which dramatically reduce the time complexity than iterative reconstruction algorithms. In this paper, we propose a novel Deep Residual Reconstruction Network (DRNet) to reconstruct the image from its Compress...
متن کاملImage Optimization and reduction of radiation dose in CT of the paranasal sinuses
Introduction: Since demand for computed tomography (CT) examinations is growing, patients are exposed more frequently to ionizing radiation. To reduce the dose delivered to patients in each scan, CT technologists can change the image acquisition parameters. However, this reduces image quality. Present study aimed to optimize and reduce radiation dose in a CT of the paranasal si...
متن کاملMSR-net: Low-light Image Enhancement Using Deep Convolutional Network
Images captured in low-light conditions usually suffer from very low contrast, which increases the difficulty of subsequent computer vision tasks in a great extent. In this paper, a low-light image enhancement model based on convolutional neural network and Retinex theory is proposed. Firstly, we show that multi-scale Retinex is equivalent to a feedforward convolutional neural network with diff...
متن کاملShift-Net: Image Inpainting via Deep Feature Rearrangement
Deep convolutional networks (CNNs) have exhibited their potential in image inpainting for producing plausible results. However, in most existing methods, e.g., context encoder, the missing parts are predicted by propagating the surrounding convolutional features through a fully connected layer, which intends to produce semantically plausible but blurry result. In this paper, we introduce a spec...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Frontiers in Neurology
سال: 2019
ISSN: 1664-2295
DOI: 10.3389/fneur.2019.00647